Chapter 5
Pile Groups

1. Design Considerations

Thischepter provides severd hand cdculation methods for aquick
egimate of the cgpacity and movement characteridics of asdected
group of driven piles or drilled shafts for given soil conditions A
computer asisted method such as described in Chepter 5,
paragraph 4, is recommended for a detailed solution of the
pefomancedf driven pile groups Recommended factors of sefety
for pile groups are d<0 given in Table 3-2. Cdculation of the
digtribution of loads in a pile group is conddered in paragrgph 2b,
Chapter 2.

a. Driven piles. Driven piles are normaly placed in groups
with spacings less than 6B where B isthe width or diameter of an
individud pile. The pile group is often joined at the ground surface
by a concrete dab such asapile cap, Figure 5-1a. If pile gpacing
withinthe optimum range, theloed capacity of groups of driven piles
in cohesonless soils can often be greter then the aum of the
capaditites of isolated piles, because driving can compact ssndsand
can increase kin friction and end-bearing resgtance.

b. Drilled shafts. Drilled shafts are often not placed in dosdy
spaced groups, Figure 5-1b, because these foundations can be
constructed with large diameters and can extend to great depths
Exceptions indude usng drilled shefts as retaining wals or to
improve the il by replacing exiding soil with multiple drilled
shefts. Boreholes prepared for congruction of drilled shafts reduce
effective dressss in il adjacent to the Sdes and bases of shdfts
dreedy in place. Theload capedity of drilled sheftsin cohesonless
0ils spaced lessthan 6B may therefore be less than the sum of the
capacities of the individua shafts For end-bearing drilled shafts
gpading of lessthan 6B can be used without significant reduction in
loed capecity.

2. Factors Influencing Pile Group Behavior

Piles are normdly condructed in groups of verticd, batter, or a
combination of verticd and better piles The ditribution of loads
applied to a pile group ae trandered nonlinealy ad
indeterminatdy to the soil. Interaction effects between adjacant
piles in a group lead to complex solutions  Factors conddered
bdow affect the resistance of the pile group to movement and load
trandfer through the pile group to the soll.

a. Soil modulus. The dadtic soil modulus E; and the laterd
modulusof abgradereection E, relate laterd, axid, and rotationd
resgance of the pile-soil medium to digolacements Water table
depth and segpege pressures affect the modulus of cohesonless sail.
Themodulus of submerged sands should be reduced by theratio of
the submerged unit weight divided by the soil unit weight.
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b. Batter. Batered pilesare used in groups of & least two or
more pilesto increase capadity and loading resstance. The angle of
inclination should rardy excead 20 degrees from the vertica for
norma condruction and should never exceed 26%2 degrees
Battered piles should be avoided where Sgnificant negaive skin
friction and downdrag forces may occur.  Bater piles should be
avoided where the dructure's foundation must respond with
dudility to unusudlly large |oads or where large seiamic loads can be
trandferred to the structure through the foundation.

¢. Fixity. Thefixity of the pile head into the pile cap influences
the loading capadity of the pile group. Fixing the pile rather than
pinning into the pile cap usudly increasesthe laterd iffness of the
group, andthemoment. A group of fixed piles can therefore support
about twice the laterd load & identica deflections as the pinned
group. A fixed connection between the pileand cepisdso dleto
transfer Sgnificant bending moment through the connection. The
minimum veartical embedment distance of the top of the pileinto the
cap required for achieving afixed connection is 2B where Bisthe
pile diameter or width.

d. Siffness of pile cap. The diffness of the pile cap will
influence the digtribution of structura loadsto the individud piles
Thethickness of the pile cgp must be a least four timesthe width of
an individud pileto cause adgnificant influence on the siffness of
thefoundation (Heming et d. 1985). A ridgid cap can be assumed
if the diffnessof thecapis 10 or moretimes gredter than the diffness
of theindividud piles, as generdly true for massive concrete caps
A rigid cap can usudly be asumed for gravity type hydraulic
dructures.

e. Nature of loading. Static, cydic, dynamic, and trandent
loads dfect the ahility of the pile group to resist the gpplied forces
Cydic, vibratory, or repested ddic loads cause grester
displacements than a sudained ddtic load of the same magitude
Displacements can doublein some cases

f. Driving. The gpparent giffness of apilein agroup may be
greater then that of an isolated pile driven in cohesionless ol
becausethe dendty of the soil within and around a pile group can be
incressad by driving. The pile group asawhole may not reflect this
increasad iffness because the soil around and outside the group
may not be favorably affected by driving and displacementslarger
then anticipated may occur.

0. Sheet pile cutoffs Sheet pile cutoffs endosing apile group
may change the gress digribution in the soil and influence the
group load capacity. The length of the cutoff should be
determined from a flow net or other seepage analysis. The
net pressure acting on the cutoff is the sum of the
unbalanced earth and water pressures caused by the
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Figure 5-1. Groups of deep foundations

cutoff. Sted pile cutoffs should be consdered in the andysis as h. Interaction effects. Deep foundations where gpacings
not totally impervious. Flexible stedl sheet piles should cause between individud piles are less than six times the pile width B
negligible load to be transferred to the soil. Rigid cutoffs, such cause interaction effects between adjacent piles from
asaoconcrete cutoff, will transfer the unbalanced earth and water

pressures to the structure and shdl be accounted for in the

anaysis of the pile group.
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overlapping of stress zones in the soil, Figure 5-2. In situ soil
stresses from pile loads are applied over a much larger area
and extend to a greater depth leading to greater settlement.

i. Pile spacing. Piles in a group should be spaced so
that the bearing capacity of the group is optimum. The
optimum spacing for driven piles is 3 to 3.58 (Vesic 1977)
or 0.02L + 2.5B, where L is the embedded length of the
piles (Canadian Geotechnical Society 1985). Pile spacings
should be at least 2.5B.

3. Design for Vertical Loads

The methodology should provide calculations of the pile
group capacity and displacements such that the forces are in
equilibrium between the structure and the supporting piles
and between the piles and soil supporting the piles. The
allowable group capacity is the ultimate group capacity
divided by the factor of safety. The factor of safety is
usually 3 for pile groups, Table 3-2. Methods for analysis
of axial load capacity and settlement are provided below.

a. Axial capacity of drilled shaft groups. The
calculation depends on whether the group is in sands or
clays. Installation in cohesionless sands causes stress relief
and a reduced density of the sands during construction. The
efficiency method is appropriate whether the pile cap is or
i1s not in firm contact with the ground. Block failure,
however, may occur when the base of the group overlies soil
that 1s much weaker than the soil at the base of the piles.
Group capacity in cohesive soil depends on whether or not
the pile cap is in contact with the ground.

(1) Group capacity for cohesionless soil. Group
ultimate capacity is calculated by the efficiency method for
cohesionless soil

O = N*E,xQ, -1
where
Q. = group capacity, Kips
n = number of shafts in the group
E, = efficiency
Q, = ultimate capacity of the single shaft

E, should be > 0.7 for spacings = 3B and increases linearly
to 1.0 for spacings = 6B where B is the shaft diameter or
width (FHWA-HI-88-042). E, should vary linearly for
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spacings between 3B and 6B. E, = 0.7 for spacings < 38.
The factor of safety of the group is the same as that of the
individual shafts.

(2) Group capacity for cohesive soil. Groups with the
cap in firm contact with the clay may fail as a block of soil
containing the drilled shafts, even at large spacings between
individual shafts. The ultimate group capacity is either the
lesser of the sum of the individual capacities or the ultimate
capacity of the block. The block capacity is determined by

Qu = 2L(H, + Hy) Cp.

(3-2)
+ NchcubeLxHW
where
L = depth of penetration meter (feet)

H, = horizontal length of group meter (feet)

H, = hornizontal width of group meter (feet)

C, = average undrained shear strength of cohesive
soil in which the group is placed kN/m? (ksf)

C, = undrained shear strength of cohesive soil at
the base kN/m? (ksf)

N, = cohesion group bearing capacity factor

N,, is determined by

124

H
N, =50 1+022%| [ 1402 L
¢ HL HW

for L <25
H

(5-3a)

H
N = 7.5[ 1+0.2 _ﬁ'_”) for L >25 (5-3b)

w

The group capacity is calculated by the efficiency
equation 5-1 if the pile cap is not in firm contact with the
soil. Overconsolidated and insensitive clay shall be treated
as if the cap is in firm contact with the ground.
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Figure 5-2. Stress zones in soil supporting piles

(@) Presence of locally soft soil should be checked because this
soil may cause some driven piles or drilled shafts to fail. The
equivalent mat method in Table 5-1 is recommended to calculate
group capacity in soft clays, e.g. C, < 0.5 ksf.

(b) The ultimate capacity of a group in a strong clay soil
overlying weak clay may be estimated by assuming block punching
through the weak underlying soil layer. Group capacity may be
calculated by equation 5-2 using the undrained strength C,, of the
underlying weak clay. A less conservative solution is provided
(FHWA-HI-88-042) by

Zy

Cug 10H,,

= ng,l +
£ ng,u

[ng,u - ng,l]

54)

where

Que1 = group capacity if base at top of lower
weak soil, kips

Quew = group capacity in the upper soil if the weaker
lower soil were not present, kips

vertical distance from the base of the shafts
in the group to the top of the weak layer, feet

Z

Hy, = least width of group, feet

Equation 5-4 can also be used to estimate the ultimate
capacity of a group in a strong cohesionless soil overlying



a weak cohesive layer.

b. Axial capacity of driven pile groups. Driven piles
are normally placed in groups with spacings less than 3B
and joined at the ground surface by a concrete cap.

(1) Group capacity for cohesionless soil. Pile driving
compacts the soil and increases end-bearing and skin
friction resistance. Therefore, the ultimate group capacity
of driven piles with spacings less than 3B can be greater
than the sum of the capacities of the individual piles.

(2) Group capacity for cohesive soil. For this case, the
ultimate capacity of a pile group is the lesser of the sum of
the capacities of the individual piles or the capacity by block
failure.

(2) The capacity of block failure is given by equation 5-
2.

(b) The capacity of a pile group with the pile cap not in
firm contact with the ground may be calculated by the
efficiency method in equation 5-1.

(3) Uplift capacity. The ultimate uplift capacity of a
pile group is taken as the lesser of the sum of the individual
pile uplift capacities or the uplift capacity of the group
considered as a block.

(a) Cohesionless soil. The side friction of pile groups
in sands decreases with time if the piles are subject to
vibration or lateral loads. The uplift capacity will be at least
the weight of the soil and piles of the group considered as a
block.

(b) Cohesive soil. The uplift capacity will include side
friction and is estimated by

Qu = 2L(Hy + H)C,, + W, (-3
where
C,, = average undrained shear strength along the
perimeter of the piles, ksf

114 =

; weight of the pile group considered as a

block, kips
W, also includes the weight of the soil within the group.

c. Settlement analysis. The settlement of a group of
piles with load #Q (n - number of piles and Q = load per
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pile) can be much greater than the settlement of a single pile
with load O because the value of the stress zones of a pile
group is much larger and extends deeper than that of a
single pile, Figure 5-2. Hand calculation methods for
estimating the settlement of pile groups are approximate.
An estimate of settlement can also be obtained by
considering the pile group as an equivalent mat as in Table
5-1, then calculating the settlement of this mat as given in
chapter 5 of TM 5-818-1, “Soils and Geology; Procedures
for Foundation Design of Buildings and Other Structures
(Except Hydraulic Structures).”

(1) Immediate settlement. - A simple method for
estimating group settlement from the settlement of a single
pile is to use a group settlement factor

pg = gf o] (5 -6&)
where
p, = group scttlement, feet
g = group settlement factor
p = settlement of single pile, feet

(2) The group settlement factor for sand (Pile Buck Inc.
1992) is

(5-6b)

where H, = width of the pile group and B is the pile
diameter or width.

(b) The group settlement factor for clay (Pile Buck Inc.
1992)is

g =1+ i i (5-6¢)
f i=1 nsi
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Table 5-1
Equivalent Mat Method of Group Pile Capacity Failure in Soft Clays

Step Description

1 Replace group with a flexible mat of same dimensions as the
group at some depth along the pile length; mat depth
determined as follows:

Depth Soil Condition

Ground Surface Highly overconsolidated soil at the
surface underlain by softer soil

2/3 of pile length Group support obtained mostly from skin
from top friction

Pile tip End-bearing piles

2  Assume the mat carries the full group load

3 Distribute pressure on the mat to the underlying soft clay
either by a line that makes a 60-~degree angle with the
horizontal or by Boussinesq theory; the 60-degree method
reduces mat pressure by the ratio of mat area divided by
area of soil enclosed by the 60—degree line at the

selected depth

l W W
xX X XXX XX
SOO OCVERCONSOL I DATED
D SO L
soft q - qmcHw‘HL
(H 4Dyope) (HtDyppe)
v Vv ¥y v ¥ ¥ v ¥

SOFT sOIlL

4  Compare the distributed pressure at the top of the soft clay
with 9C, where C, 1is the average undrained shear
strength of the soft clay

where n = number of pilesin the group
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where
n = number of piles in the group
s; = distance from pile i to the location in the

group where group settlement is to be
calculated, feet

(2) Estimates using field soil test results. Standard
penetration and cone penetration test data can provide useful
estimates assuming the group can be represented by an
equivalent single pile.

(a) Settlement of pile groups in a homogeneous sand

deposit not underlain by a more compressible soil at greater
depth (Meyerhof 1976) is

! \/': (5-7a)

I= 1 - > 0.5 (5-7b)

p, = settlement of pile group, in.
g = net foundation pressure on the group, ksf
B, = width of pile group, feet
I = influence factor

N, = average standard penetration resistance within
the depth beneath the pile tip equal to the group width
corrected to an effective overburden pressure of 2 kips per
square foot, blows/feet

L = embedment depth of equivalent pile, feet

(b) The calculated settlement should be doubled for a
silty sand.

(c) Maximum settlement estimated from static cone
penetration tests (Meyerhof 1976) is
(5-7¢)

where ¢, is the average cone tip resistance within depth H,
beneath the pile tip in the same units as g.

(3) Consolidation settlement. Long-term settlement may
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be estimated for pile groups in clay by the equivalent
method in Table 5-2.

Table 5-2
Equivalent Mat Method for Estimating Consolidation
Settlement of Pile Groups in Clay

Step Description

1 Replace the group with a mat at some depth
along the embedded pile length L; this depth is
2/3 of L for friction piles and L for.end bearing

piles.

2 Distribute the load from the mat to the underlying
soil by Boussinesq theory or the 60-degree
method.

3 Calculate settlement of soil layers below the mat

by one-dimensional consolidation theory; any soil
above the mat is assumed incompressible.

4 Multiply the calculated settlement by 0.8 to
account for rigidity of the group.

d. Application. A square three by three group of nine
steel circular closed-end pipe piles with diameter B = 1.5
feet is to be driven to an embedment depth L = 30 feet in the
same soils as Figure 3-15. These soils are a 15-feet layer of
clay over sand. Spacing is 4B and the horizontial width A,
is 15B=15 x 1.5=122.5 feet. The group upper- and lower-
bound estimates of ultimate and allowable capacity and
expected settlement at the allowable capacity are to be
calculated to provide guidance for the pile group design.
Pile driver analysis with a load test will be conducted at the
start of construction. The factor of safety to be used for this
analysis is 3.

(1) Group ultimate capacity. The group ultimate
capacity Q,, is expected to be the sum of the ultimate
capacities of the individual piles. These piles are to be
driven into sand which will densify and increase the end-
bearing capacity. From Table 3-7, the calculated lower-
bound ultimate capacity is Q,, = 317 kips, and the upper-
bound capacity is Q,, = 520 kips. Therefore,, @
= 2,853 klpS and Q = 9 x 520 =

"XQ..|—9X317 ug,up

4,680 kips.
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(2) Group allowable capacity. The allowable group
upper- and lower-bound capacities are

2., 2,853
I?) . = = 951 kips
f £ 3
Qllg,u 4,680
0 = = = 1,560 kips
@ 8.
FS 3

The group allowable load is expected to be between 951 and
1,560 kips. Lower FS may be possible.

(3) Group settlement. Settlement at the allowable
capacity will be greater than that of the individual piles.
The settlement of each pile is to be initially determined from
equation 3-38, then the group settlement is to be calculated
from equation 5-6.

(a) The allowable lower- and upper-bound capacities of
each individual pile is Q,, = 317/3 = 106 kips and @, =
520/3 = 173 kips. All the skin friction is assumed to be
mobilized. Therefore, O,, = 0,,, = 159 kips > Q,, = 106
kips and Q,, = Q,., = 231 kips > (), = 173 kips. Base
resistance will not be mobilized because the ultimate skin
resistance Q,, exceeds the allowable capacity. From
equation 3-38a, axial compression is

L

p = 12 « Q
’ 5% s

30

= 0.00006 x Q0 inch

The elastic modulus of the pile is assumed similar to
concrete £, = 432,000 ksf because this pile will be filled
with concrete. Lower- and upper-bound axial compression
is therefore

P = 0.00006 x 106 = 0 .0063 inch

[ = 0 .00006 x 173 = 0.0104 inch
w

(b) Tip settlement from load transmitted along the
shaft length from equation 3-38c is

where

C

s

= [0.93+0.16 (L/B)**]1 G =[0.93+0.16
(30/1.5)°% 1 (0.03) = 0.05

lower-bound g, , = 89 ksf
upper-bound g, = 163 ksf from Table 3-7

Lower- and upper-bound tip settlement from the load
transmitted along the shaft length for O, , = 138 kips and

0., =231 kips is

0.02 x 159
P = — = 0.031 inch
5.

103

0.02 x 231
p s ————— - 0.028 inch

163

Total settlements for lower- and upper-bound capacities are

PP, P

[ 0. 006 + 0.036 = 0.042 inch

P = 0.010 +0.028 = 0.038 inch
N3

Total settlement p is about 0.04 inch.

(c) Group settlement factor g, from equation 5-6b is




Group settlement from equation 5-6a is

P,z g,p = 3.8 X004 - 015 inch
s

4. Design for Lateral Loads’

a. Response to lateral loading of pile groups. There
are two general problems in the analysis of pile groups: the
computation of the loads coming to each pile in the group
and the determination of the efficiency of a group of closely
spaced piles. Each of these problems will be discussed in
the following paragraphs.

(1) Symmetric pile group. The methods that are
presented are applicable to a pile group that is symmetrical
about the line of action of the lateral load. That is, there is
no twisting of the pile group so that no pile is subjected to
torsion. Therefore, each pile in the group can undergo two
translations and a rotation. However, the method that is
presented for obtaining the distribution of loading to each
pile can be extended to the general case where each pile can
undergo three translations and three rotations (Reese,
O’Neill, and Smith 1970; O’Neill, Ghazzaly, and Ha 1977,
Bryant 1977).

(2) Soil reaction. In all of the analyses presented in this
section, the assumption is made that the soil does not act
against the pile cap. In many instances, of course, the pile
cap is cast against the soil. However, it is possible that soil
can settle away from the cap and that the piles will sustain
the full load. Thus, it is conservative and perhaps logical to
assume that the pile cap is ineffective in carrying any load.

(3) Pile spacing. If the piles that support a structure are
spaced far enough apart that the stress transfer between
them is minimal and if only shear loading is applied, the
methods presented earlier in this manual can be employed.
Kuthy et al. (1977) present an excellent treatment of this
latter problem.

b. Widely spaced piles. The derivation of the equations
presented in this section is based on the assumption that the
piles are spaced far enough apart that there is no loss of
efficiency; thus, the distribution of stress and deformation
from a given pile to other piles in the group need not be
considered. However, the method that is derived can be
used with a group of closely spaced piles, but another level
of interation will be required.

IPortions of this section were abstracted from the writings
of Dr. L. C. Reese and his colleagues, with the permission
of Dr. Reese. :
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(1) Model of the problem. The problem to be solved is
shown in Figure 5-3. Three piles supporting a pile cap are
shown. The piles may be of any size and placed on any
batter and may have any penetration below the groundline.
The bent may be supported by any number of piles but, as
noted earlier, the piles are assumed to be placed far enough
apart that each is 100 percent efficient. The soil and loading
may have any characteristics for which the response of a
single pile may be computed. The derivation of the
necessary equations proceeds from consideration of a
simplified structure such as that shown in Figure 5-4 (Reese
and Matlock 1966; Reese 1966). The sign conventions for
the loading and for the geometry are shown. A global
coordinate system, a-b, is established with reference to the
structure. A coordinate system, x-y, is established for each
of the piles. For convenience in deriving the equilibrium
equations for solution of the problem, the a-b axes are
located so that all of the coordinates of the pile heads are
positive. The soil is not shown, but as shown in Figure 5-
4b, it is desirable to replace the piles with a set of “springs”
(mechanisms) that represent the interaction between the
piles and the supporting soil.

(2) Derivation of equations. If the global coordinate
system translates horizontally A/ and vertically Av and if the
cordinate system, shown in Figure 5-4, rotates through the
angle o, the movement of the head of each of the piles can
be readily found. The angle o is assumed to be small in the
derivation. The movement of a pile head x, in the direction
of the axis of the pile is

x = (A Ak + ba ) sm 6
’ s

(5-8)
+ (Av + aa . ) cos ]

The movement of a pile head y, transverse to the direction of
the axis of the pile (the lateral deflection) is

y = (A h +

b o ) cos 0
' s

(5-9)

- (Av + ao ) sin 6

The assumption is made in deriving equations 5-8 and 5-9
that the pile heads have the same relative positions in space
before and after loading. However, if the pile heads move
relative to each other, an adjustment can be made in
equations 5-8 and 5-9 and a solution achieved by iteration.
The movements computed by equations 5-8 and 5-9 will
generate forces and moments at the pile head.
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Figure 5-3. Typical pile-supported bent
The assumption is made that curves can be developed, Mo -y (5-11)

usually nonlinear, that give the relationship between pile-
head movement and pile-head forces. A secant to a curve
is obtained at the point of deflection and called the modulus
of pile-head resistance. The values of the moduli, so
obtained, can then be used, as shown below, to compute the
components of movement of the structure. If the values of
the moduli that were selected were incorrect, iterations are
made until convergence is obtained. Using sign conventions
established for the single pile under lateral loading, the
lateral force P, at the pile head may be defined as follows:

(5-10)

If there is some rotational restraint at the pile-head, the
moment is

5-10

' m

The moduli J, and J,, are not single-valued functions of pile-
head translation but are functions also of the rotation «, of
the structure. For batter piles, a procedure is given in
Appendix D for adjusting values of soil resistance to
account for the effect of the batter. If it is assumed that a
compressive load causes a positive deflection along the pile
axis, the axial force P, may be defined as follows:

(5-12)

It is usually assumed that P, is a single-valued function of x,
A curve showing axial load versus deflection may be
computed by one of the procedures recommended by several
authors (Reese 1964; Coyle and Reese 1966; Coyle and



Sulaiman 1967; Kraft, Ray, and Kagawa 1981) or the
results from a field load test may be used. A typical curve
is shown in Figure 5-5a.

(3) Computer programs. Computer programs or
nondimesional methods may be used to obtain curves
showing lateral load as a function of lateral deflection and
pile-head moment as a function of lateral deflection. The
way the pile is attached to the superstructure must be taken
into account in making the computations. Typical curves
are shown in Figures 5-5b and 5-5c. The forces at the pile
head defined in equations 5-10 through 5-12 may now be
resolved into vertical and horizontal components of force on
the structure, as follows:

F = -(P cs 6 - P sn 8) (5'13)
F, = -(szin 9 P cos 8 ) (5'14)

The moment on the structure is

M= Ty (5'15)

The equilibrium equations can now be written, as follows:

P o+ ZF_ =0 (5'16)
P ZF =0 (5-17)
M + ZM_+ TaF + Zb F_ =0 (5-18)

s
i : '

The subscript i refers to values from any “i-th” pile. Using
equations 5-8 through 5-15, equations 5-16 through 5-18
may be written in terms of the structural movements.
Equations 5-19 through 5-21 are in the final form.

P = AV[EZ 4] + AW[ZB ]

(5-19)
+ @ [Bad + Zb B
P.= AVIZB ) + AK[EC ]
(5-20)
+ aJ[E a)B‘ + Eb'C/]
M = Av[ED +« T a4 + b B
+ AA[ZTE_+ T aB + TbC]
(5-21)

2
+ o [Z2 a D + Z a A + X b E
5 i i i [

« Zbh, C_ ¢ B 2a b B ]

where
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A = J cos [ + J  sin <]
i x i y
B = (J - J ) sin 8 cos O
‘ x, y, ' ‘
C J sin C @ v J ws 08
t ! Yy
D J sin 6
‘
'
E J cos O

These equations are not as complex as they appear. For
example, the origin of the coordinate system can usually be
selected so that all of the b-values are zero. For vertical
piles, the sine terms are zero and the cosine terms are unity.
For small deflections, the J-values can all be taken as
constants. Therefore, under a number of circumstances it is
possible to solve these equations by hand. However, if the
deflections of the group is such that the nonlinear portion of
the curves in Figure 5-5 is reached, the use of a computer
solution is advantageous. Such a program is available
through the Geotechnical Engineering Center, The
University of Texas at Austin (Awoshika and Reese 1971;
Lam 1981).

(4) Detailed step-by-step solution procedure.

(2) Study the foundation to be analyzed and select a two-
dimensional bent where the behavior is representative of the
entire system.

(b) Prepare a sketch such that the lateral loading comes
from the left. Show all pertinent dimensions.

(¢) Select a coordinate center and find the horizontal
component, the vertical component, and the moment
through and about that point.

(d) Compute by some procedure a curve showing axial
load versus axial deflection for each pile in the group; or,
preferably, use the results from a field load test.

(e) Use appropriate procedures and compute curves
showing lateral load as a function of lateral deflection and
moment as a function of lateral deflection, taking into
account the effect of structural rotation on the boundary
conditions at each pile head.

(f) Estimate trial values of J, , J, , and J,, for each pile in
the structure.
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Figure 5-4. Simplified structure showing coordinate systems and sign
conventions
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a. Axial pile resistance versus
axial displacement.

b. Lateral pile resistance versus
lateral pile displacement.

00 o
o0
M.
(<)’ = My
i
Yy,

of the pile head.

c. Moment at pile head versus lateral pile
displacement for various rotations (ap)

Figure 5-5. Set of pile resistance functions for a given pile
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(g) Solve equations 5-19 through 5-21 for values of Av,
Ah, and «, .

(h) Compute pile-head movements and obtain new
values of J, , J, , and J,, for each pile.

(i) Solve equations 5-19 through 5-21 again for new
values of Av, Ak, and «, .

() Continue iteration until the computed values of the

structural movements agree, within a given tolerance, with
the values from the previous computation.
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(k) Compute the stresses along the length of each pile
using the loads and moments at each pile head.

(5) Example problem. Figure 5-6 shows a pile-
supported retaining wall with the piles spaced 8 feet apart.
The piles are 14 inches in outside diameter with four No. 7
reinforcing steel bars spaced equally. The centers of the
bars are on an 8-inch circle. The yield strength of the
reinforcing steel is 60 kips per square inch and the
compressive strength of the concrete is 2.67 kips per square
inch. The length of the piles is 40 feet. The backfill is a
free-draining, granular soil



with no fine particles. The surface of the backfill is treated
to facilitate a runoff, and weep holes are provided so that
water will not collect behind the wall. TheforcesP, , P, ,
P, , and ,P (shown in Figure 5-6) were computed as
follows: 21.4, 4.6, 18.4, and 22.5 kips, respectively. The
resolution of the loads at the origin of the global coordinate
system resulted in the following service loads: P, = 46 kips,
P, = 21 kips, and M = 40 foot-kips (some rounding was
done). The moment of inertia of the gross section of the pile
was used inthe andlysis. Theflexura rigidity El of the piles
was computed to be 5.56 x 10° pounds per square inch.
Computer Program PMEIX was run and an interaction
diagram for the pile was obtained. That diagram is shown
in Figure 5-7. A field load test was performed at the site
and the ultimate axia capacity of a pile was found to be 176
kips. An analysis was made to develop a curve showing
axial load versus settlement. The curve is shown in
Figure 5-8. The subsurface soils at the site

F 3
. 400} \\
a b N
i N
- Q
N
a’ N\
~ \
g 200 [ ]
)
(o}
= /
— /
Q
3 4
&
o 1 z 1 >
0 5 10
Ultimate Moment, in-kips x IO2

Figure 5-7. Interaction diagram of reinforced concrete pile

congg of dlty clay. The water content averaged 20 percent
in the top 10 feet and averaged 44 percent below 10 feet.
The water table was reported to be at a depth of 10 feet
from the soil surface. There was a considerable range in the
undrained shear strength of the clay and an average vaue of
3 kips per square foot was used in the analysis. A value of
the submerged unit weight of 46 pounds per cubic foot as
employed and the vaue of g, was estimated to be 0.005. In
making the computations, the assumption was made that all
of theload was carried by piles with none of the load taken
by passive earth pressure or by the base of the footing. It
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was further assumed that the pile heads were free to rotate.
Asnoted earlier, the factor of safety must be in the loading.
Therefore, the loadings shown in Table 5-3 were used in the
preliminary computations. Table 5-4 shows the movements
of the origin of the globa coordinate system when
equation 5-19 through 5-21 were solved simultaneoudly.
The loadings were such that the pile response was amost
linear so that only a small number of iterations were

Axial Load, kips
50 100 150
(o] T T T
O
£
:
g 0.2r
2
5
]
0.3F

Figure 5-8. Axial load versus settlement for
reinforced concrete pile

required to achieve converenge. The computed pile-head
movements, loads, and moments are shown in Table 5-5.

(6) Verify results. The computed loading on the pilesis
shown in Figure 5-9 for Case 4. The following check is
made to see that the equilibrium equations are satisfied.

EF, ' 24.2 %97.2 cos 14 &14.3 snl4

' 242 %943 &35 ' 115.0 kips OK

EF, ' 152 %14.3 cos 14 %97.2 sn 14

' 15.2 %13.9 %23.6 ' 52.7 kips OK
EM ' &(24.2) (1.5) %(97.2 cos 14) (1.5)

&(14.3 sin 14) (1.5)

' &36.3 %141.4 &5.2

' 99.9 ft&kips OK
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Table 5-3
Values of Loading Employed in Analyses

Case Loads, kips moment, ft-kips Comment

P, P,
1 46 21 40 service load
2 69 315 60 1.5 times service load
3 92 42 80 2 times service load
4 115 52.5 100 2.5 times service load

Note: P, /P, = 2.19

Table 5-4

Computed Movements of Origin of Global Coordinate System

Case Vertical movement Av Horizontal movement Ah Rotation o
in. in. rad

1 0.004 0.08 9 x10%

2 0.005 0.12 1.4 % 10"

3 0.008 0.16 1.6 x 10"

4 0.012 0.203 8.4 x 10°

Thus, the retaining wall isin equilibrium. A further check
can be made to see that the conditions of compatibility are
Figure 5-8, an axia load of 97.2 kips results in an axial
deflection of about 0.054 inch, a value in reasonable
satisfied. One check can be made at once. Referring to
agreement with the value in Table 5-5. Further checks on
compatibility can be made by using the pile-head loadings
and Computer Program COM622 to see if the computed
deflections under laterd load are consistent with the values
tabulated in Table 5-5. No firm conclusions can be made
concerning the adequacy of the particular design without
further study. If the assumptions made in performing the
analyses are appropriate, the results of the analyses show
the foundation to be capable of supporting the load. Asa
matter of fact, the piles could probably support a wall of
greater height.

c. Closely spaced piles. The theory of elagticity has
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been employed to take into account the effect of a single
pile on others in the group. Solutions have been developed
(Poulos 1971; Banerjee and Davies 1979) that assume a
linear response of the pile-soil system. While such
methods are ingtructive, there is ample evidence to show
that soils cannot generally be characterized as linear,
homogeneous, elastic materials. Bogard and Matlock
(1983) present a method in which the p-y curve for a
sngle pile is modified to take into account the group effect.
Excellent agreement was obtained between their computed
results and results from field experiments (Matlock et al.
1980). Two approaches to the analysis of a group of
closely spaced piles nder lateral load are given in the
following paragraphs. One method is closely akin to the
use of efficiency formulas, and the other method is based
on the assumption that the soil within the pile group moves
laterally the same amount as do the piles.
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(1) Efficiency formulas. Pile groups under axial load
are sometimes designed by use of efficiency formulas.
Such a formula is shown as equation 5-22.

(@0, - Eanica,, (5-22)
where
(Q,)c = ultimate axial capacity of the group
E = efficiency factor (1 or < 1)
n = number of piles in the group

(Q.), = ultimate axial capacity of an individual pile

Various proposals have been made about obtaining the

Figure 5-9. Pile loading - Case 4

value of E; for example, McClelland (1972) suggested that
the value of E should be 1.0 for pile groups in cohesive
soil with center-to-center spacing of eight diameters or
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more and that E should decrease linearly to 0.7 at a
spacing of three diameters. McClelland based his
recommendations on results from experiments in the field
and in the laboratory. It is of interest to note that no
differentiation is made between piles that are spaced front
to back, side by side, or spaced as some other angle
between each other. Unfortunately, experimental data are
limited on the behavior of pile groups under lateral load.
Furthermore, the mechanics of the behavior of a group of
laterally loaded piles are more complex than for a group of
axially loaded piles. Thus, few recommendations have
been made for efficiency formulas for laterally loaded
groups. Two different recommendations have been made
regarding the modification of the coefficient of subgrade
reaction. The Canadian Foundation Engineering Manual
(Canadian Geotechnical Society 1985) recommends that
the coefficient of subgrade reaction for pile groups be
equal to that of a single pile if the spacing of the piles in
the group is eight diameters. For spacings smaller than
eight diameters, the following ratios of the single-pile
subgrade reaction were recommended: six diameters, 0.70;
four diameters, 0.40; and three diameters, 0.25. The
Japanese Road Association (1976) is less conservative. It
is suggested that a slight reduction in the coefficient of
horizontal subgrade reaction has no serious effect with
regard to bending stress and that the use of a factor of
safety should be sufficient in design except in the case
where the piles get quite close together. When piles are
closer together than two and one-half diameters, the
following equation is suggested for computing a factor p to
multiply the coefficient of subgrade reaction for the single
pile.

W= 1 - 0.2(2.5 - L/D) L < 2.5D (5‘23)
where
L = center-to-center distance between piles
D = pile diameter
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Table 5-5
Computed Movements and Loads at Pile Heads
Case Pile 1 Pile 2
xt Yt Px Pt Mmax xl yt Px Pt Mmax
in. in.
in. in. kips kips - in. in. kips kips -kips
kips
1 0.005 0.08 9.7 6.0 148 0.02 0.077 38.9 5.8 143
2 0.008 0.12 14.5 9.0 222 0.03 0.116 58.3 8.6 215
3 0.011 0.162 19.3 121 298 0.04 0.156 77.7 11.5 288
4 0.013 0.203 242 15.2 373 0.06 0.194 97.2 143 360

(2) Single-pile method. The single-pile method of
analysis is based on the assumption that the soil contained
between the piles moves with the group. Thus, the pile
group that contained soil can be treated as a single pile of
large diameter.

(3) A step-by-step procedure for single-pile method.

(a) The group to be analyzed is selected and a plan
view of the piles at the groundline is prepared.

(b) The minimum length is found for a line that
encloses the group. If a nine-pile (three by three) group
consists of piles that are 1 foot square and three widths on
center, the length of the line will be 28 feet.

(¢) The length found in step b is considered to be the
circumference of a pile of large diameter; thus, the length
is divided by  to obtain the diameter of the imaginary pile
having the same circumference of the group.

(d) The next step is to determine the stiffness of the
group. For a lateral load passing through the tops of the
piles, the stiffness of the group is taken as the sum of the
stiffness of the individual piles. Thus, it is assumed that
the deflection at the pile top is the same for each pile in
the group and, further, that the deflected shape of each pile
is identical. Some judgment must be used if the piles in
the group have different lengths.

(¢) Then, an analysis is made for the imaginary pile,
taking into account the nature of the loading and the
boundary conditions at the pile head. The shear and

moment for the imaginary large-siie pile is shared by the
individual piles according to the ratio of the lateral stiffness
of the individual pile to that of the group.

The shear, moment, pile-head deflection, and pile-head
rotation yield a unique solution for each pile in the group.
As a final step, it is necessary to compare the single-pile
solution to that of the group. It could possibly occur that
the piles in the group could have an efficiency greater than
one, in which case the single-pile solutions would control.

(4) Example problem. A sketch of an example
problem is shown in Figure 5-10. It is assumed that steel
piles are embedded in a reinforced concrete mat in such a
way that the pile heads do not rotate. The piles are
14HP89 by 40 feet long and placed so that bending is
about the strong axis. The moment of inertia is 904
inches* and the modulus of elasticity of 30 x 10 pounds
per square inch. The width of the section is 14.7 inches
and the depth is 13.83 inches. The soil is assumed to be
a sand with an angle of internal friction of 34 degrees, and
the unit weight is 114 pounds per cubic foot. The
computer program was run with a pile diameter of
109.4 inches and a moment of inertia of 8,136 inches’
(nine times 904). The results were as follows:

v = 0 .885 inch
s

M = 3.60 x 10 - b for group

x 10 - b for single pile

Bending stress = 25 .3 Kkips /sq in.
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The deflection and stress are for a single pile. If asingle
pile is analyzed with a load of 50 kips, the groudline
deflection was 0.355 inch and the bending stress was 23.1
kips per square inch. Therefore, the solution with the
imaginary large-diameter single pile was more critical.

5. Computer Assisted Analysis

A computer assisted analysis is a reasonable alternative for

4350 kips -L 1

v S~

7 4 |

N H H H
3 8 ] 2
2 6 3

—_— H H H

Figure 5-10. Plan and evaluation of foundation
analyzed in example problem
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obtaining reliable estimates of the performance of pile
groups. Severd computer programs can assist the analysis
and design of groups.

a. CPGA. Program CPGA provides a three-
dimendond stiffness analysis of a group of vertical and/or
battered piles assuming linear elastic pile-soil interaction,
arigid pile cap, and arigid base (WES Technical Report
ITL-89-3). Maxtrix methods are used to incorporate
position and batter of piles as well as piles of different
sizes and materials. Computer program CPGG displays
the geometry and results of program CPGA.

b. STRUDL. A finite element computer program such
as STRUDL or SAP should be used to analyze the
performance of a group of piles with a flexible base.

c. CPGC. Computer program CPGC develops the
interaction diagrams and data required to investigate the
structural capacity of prestressed concrete piles (WES
Instruction Report ITL-90-2).

d. CPGD. Computer program (Smith and Mlakar
1987) extends the rigid cap anaysis of program CPGA to
provide a simplified and realistic approach for seismic
analysis of pile foundations. Program CPGD (in
development stage at WES) includes viscous damping and
response-spectrum loading to determine pile forces and
moments.
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